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1 Introduction 
The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically 
make critical decisions on how to most reliably and economically balance electrical load and 
generation in time frames ranging from a few minutes to six hours ahead. At higher levels of 
wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead 
wind power forecasts. Forecasts on this time scale have typically been strongly dependent on 
short-term trends indicated by the time series of power production and meteorological data from 
a wind farm. Additional input information is often available from the output of Numerical 
Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the 
region surrounding the wind generation facility. 

A widely proposed approach to improve short-term forecasts is the deployment of off-site 
meteorological towers at locations upstream from the wind generation facility in order to sense 
approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is 
often very difficult to derive significant benefit in forecast performance from this approach. The 
difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling 
wind variability at a site change from day to day if not from hour to hour. Thus, a location that 
provides some useful forecast information for one time may not be a useful predictor a few hours 
later. Indeed, some processes that cause significant changes in wind power production operate 
predominantly in the vertical direction and thus cannot be monitored by employing a network of 
sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and 
deployment locations to get the most benefit for a specific short-term forecast application. 

Two tools recently developed in the meteorological research community have the potential to 
help determine the locations and parameters to measure in order to get the maximum positive 
impact on forecast performance for a particular site and short-term look-ahead period. Both tools 
rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to 
measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target 
location. The fundamental hypothesis is that points and variables with high sensitivity are good 
candidates for measurements since information at those points are likely to have the most impact 
on the forecast for the desired parameter, location and look-ahead period. 

One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the 
other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; 
Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction 
problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) 
but neither has been applied to mesoscale space-time scales of winds or any other variables near 
the surface of the earth.  

A number of factors suggest that ESA is better suited for short-term wind forecasting 
applications. One of the most significant advantages of this approach is that it is not necessary to 
linearize the mathematical representation of the processes in the underlying atmospheric model 
as required by the adjoint approach. Such a linearization may be especially problematic for the 
application of short-term forecasting of boundary layer winds in complex terrain since non-linear 
shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of 
the wind power production forecast problem. 

The specific objective of work described in this paper is to test the ESA as a tool to identify 
measurement locations and variables that have the greatest positive impact on the accuracy of 
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wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of California’s 
Tehachapi Pass during the warm (high generation) season. The paper is organized as follows. 
Section 2 highlights the methodology, Section 3 presents results, and Section 4 concludes with a 
summary and brief discussion of future work. 

2 Methods 
The ESA approach uses data generated by a set (ensemble) of perturbed NWP simulations for a 
sample time period to statistically diagnose the sensitivity of a specified forecast variable for a 
target location (the forecast metric) to parameters at other locations and prior times [the initial 
condition (IC) state variable]. The ensemble of NWP simulations are produced by starting with a 
single initial state at the beginning of the analysis period and introducing statistical perturbations 
into the initial and lateral boundary conditions. This process generates a set of simulations that 
differ from each other due to the perturbations. The number of simulations must be large enough 
to produce a statistically significant sample for the sensitivity calculations. Typically, 48 or more 
ensemble members have been used in previous large-scale ESA applications (Torn and Hakim, 
2008). However, there have been no published studies documenting the sensitivity of results to 
the number of the ensemble members. 

Each of these initial states is then used as the starting point for an NWP simulation. The NWP 
simulations are marched forward in time with periodic assimilation of observational data for a 
representative period of time referred to as the “analysis period”. The periodic assimilation of 
measurement data serves to keep the model state from drifting too far from the actual 
atmospheric conditions. However, it is important to keep the spread of the ensemble within an 
acceptable range in order to obtain meaningful results. 

Ensemble spread can be controlled by specifying characteristics of the initial condition 
perturbations through user-definable parameters. The initial perturbations are typically chosen to 
be relatively large (i.e. larger than the observation uncertainty in the initial state) so that each 
ensemble member is unique. The ensemble spread then typically decreases during the "spin up" 
of the ensemble and eventually comes into a balance within some general range that is indicative 
of the characteristics of the flow regime. For the Tehachapi Pass experiment, the range or 
standard deviation of horizontal wind speed was on the order of 3 to 5 m/s. 

Excessive ensemble divergence is usually not a problem since an increase in spread causes the 
members to adjust more to fit the available observed values. So initially large ensemble spread 
will eventually decrease by assimilating observations. On the other hand, convergence of 
ensemble members is more of an issue. A technique called covariance inflation (Anderson and 
Anderson 1999; Anderson 2007) is used to avoid ensemble convergence (i.e. large decrease in 
spread for highly predictable flows). Covariance inflation perturbs the members in areas of low 
spread based on user-specified values for the inflation parameters. 

The ensemble of simulations produces a large volume of three-dimensional data from each 
ensemble member at periodic intervals throughout the analysis period. A statistical analysis is 
then performed on these data to determine the sensitivity (∂F/∂s) of a target forecast metric (F) to 
selected IC state variables (s) from prior simulated times at all points in the model domain. This 
sensitivity relationship can be expressed as 

∂F
∂s

=
cov(F,s)

var(s)
, 
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where the covariance (cov) and variance (var) are computed over all ensemble members (Ancell 
and Hakim 2007). 

In the Tehachapi Pass application, the forecast metric (F) was the average 80-m wind speed over 
a rectangular area encompassing most of the wind generation resources in the Pass. A set of ten 
IC state variables (s) were evaluated. The simulations were generated on a three-dimensional 
grid matrix of 200 by 200 horizontal points with a horizontal spacing of 4 km and 38 vertical 
layers that covered most of southern California (area depicted in Figure 1). They were produced 
using version 2.2 of the Weather Research and Forecast (WRF) atmospheric model (Skamarock 
et al. 2005) and observational data were assimilated every 6 hours using an ensemble Kalman 
filter data assimilation procedure within the Data Assimilation Research Testbed (DART) 
software (Anderson 2001; Anderson et al. 2009). A total of 48 ensemble members were used in 
the analysis. Appendix A lists details of the WRF model configuration, ensemble Kalman filter 
data assimilation system, and types of data assimilated  

The simulation period extended from 7 July to 25 August 2008. This period was selected to 
represent warm season conditions in Tehachapi Pass. The first two days were designated as a 
“spin-up” period and the data were not used in the sensitivity calculations. Therefore, the 
analysis period covered 45 days from 0000 UTC 9 July to 0000 UTC 25 August 2008. 

 
Figure 1. The geographical area covered by the NWP model’s grid domain used in the 
Tehachapi Pass ensemble sensitivity analysis experiments. A matrix of 200 by 200 
horizontal points with a spacing of approximately 4 km between points was overlaid on 
this domain. The color shading depicts the terrain elevation (m) on the scale of the model 
grid. The white box denotes the forecast target area, i.e. the area over which the average 
forecast metric (80-m wind speed) is calculated. 
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3 Results 
 
The results presented in this section address only the 3-hour forecast look-ahead period that is of 
greatest interest to the grid operator in California. However, a similar analysis was done for the 
1-, 2-, 4-, 5-, and 6-hour look-ahead periods with data from the same ensemble of simulations. 
The relative magnitude of the sensitivity among the IC variables was similar for all look-ahead 
periods with the same IC variables having the highest and lowest sensitivity magnitudes. 
However, the patterns were somewhat different with the most significant high sensitivity areas 
closer to the forecast target area for the shorter look-ahead periods (e.g. 1 and 2 hours) and 
further away for the longer ones (e.g. 5 and 6 hours). These results suggest that the same 
variables have the greatest value to the forecast for all look-ahead periods but that the optimal 
location for the measurement changes with the look-ahead period. 

3.1 Case Example 
The output data from the ensemble of simulations provide a large volume of information about 
the space-time connection of atmospheric variability within the simulation domain and can be 
analyzed in many different ways. The approach used in this investigation follows that employed 
by Torn and Hakim (2008) in their analysis of forecast sensitivity of day-ahead forecasts over the 
western portion of the state of Washington. In their approach, the sensitivity of the forecast 
metric variable to a particular IC state variable for a specific forecast time and look-ahead period 
is determined by constructing a linear relationship between the forecast metric values (F) and the 
values of a prior IC state variable (s) at a particular model grid point based on data from all of the 
ensemble members. Figure 2 illustrates an example of the data from all of the ensemble members 
and the resulting linear relationship for F defined as the average 80-m wind speed in a 
rectangular area in Tehachapi Pass for 0300 UTC 10 Aug 2008. In this case, the IC state variable 
is the 80-m wind speed three hours earlier at grid point (82,114), which is located in the central 
valley to the northwest of Tehachapi Pass (point A in Figure 4). Each data point denotes the 
value of the 80-m wind speed at grid point (82,114) from 0000 UTC and the average 80-m wind 
speed in the Tehachapi Pass target area at 0300 UTC from one of the 48 ensemble members.  

The plot indicates that there is well-defined relationship between the changes in the 80-m wind 
speed at point (82,114) at 0000 UTC and changes in the average 80-m wind speed over the 
forecast target area three hours later. The slope of the regression line through these points defines 
the sensitivity of the forecast metric to this specific IC variable and location for the date, time, 
and look-ahead period under consideration. The interpretation of the regression line is that a 1 
m/s change in the 80-m wind speed at point (82,114) is associated with a 1.94 m/s change in the 
80-m wind speed in the Tehachapi Pass target area three hours later. The R2 value for this 
regression is a relatively high 0.415, which indicates that the variation on the 80-m wind speed at 
0000 UTC explains approximately 41% of the variance in the forecast target metric 3 hours later. 

Another set of data from all of the ensemble members for the same date and time is shown in 
Figure 3. The forecast metric is the same (80-m wind speed in the Tehachapi Pass target area) 
but the IC state variable is the 80-m wind speed at a different model grid point (19, 28), which is 
denoted as point B in Figure 4. This point is located over the Pacific Ocean to the southwest of 
the Los Angeles Basin. For this point, there is essentially no relationship between changes in the 
80-m wind speed among the ensemble members at 0000 UTC and the 80-m wind speed three 
hours later in the Tehachapi Pass target area. This result is indicated by the fact that slope of the 
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regression line associated with this data is essentially zero and the R2 value is also approximately 
zero, which indicates this variable explains none of the variance of the forecast metric three 
hours later. 

A spatial representation of the sensitivity patterns for a particular date and time can be created by 
constructing a contour map of the sensitivity values (i.e. the slopes of the regression lines 
between each grid point and the target area). The map for 0300 UTC 10 Aug 2008 is shown in 
Figure 4. The forecast target region is represented by the white box. The map indicates that there 
is a region of high sensitivity in the central valley to the north and northwest of Tehachapi Pass 
for this time period.  

The sensitivity calculation is not restricted to the same variable that is used to define the forecast 
metric. Sensitivity values can be calculated with respect to any variable that can be derived from 
the basic set of prognostic variables in the NWP model used to generate the ensemble of 
simulations.  

 
Figure 2. Scatter plot of initial condition state variable (80-m wind speed) for model grid 
point (82,114) at 0000 UTC 10 August versus forecast metric (80-m wind speed) at 0300 
UTC from each of the 48 ensemble members and the associated regression line. 
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Figure 3. Scatter plot of initial condition state variable (80-m wind speed) for model grid point 
(19, 28) at 0000 UTC 10 August versus forecast metric (80-m wind speed) at 0300 UTC from 
each of the 48 ensemble members and the associated regression line. 

 
Figure 4. Forecast sensitivity of the average 80-m wind speed in the white box (forecast 
metric box) at 0300 UTC 10 August 2008 (2000 PDT 9 August) to 80-m wind speed 
three hours earlier. The locations for which the ensemble data are depicted in Figures 2 
(point A) and 3 (point B) are also shown. The color shading indicates the change in the 
80-m wind speed within the metric box associated with a change in the 80-m wind speed 
at a point in the domain three hours earlier. 
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3.2 Diurnal Variability 
It is known that the warm season wind regime in Tehachapi Pass is characterized by a prominent 
diurnal pattern whose amplitude and phase is modulated by the larger scale atmospheric weather 
features. This pattern is shown in Figure 5, which depicts the average wind speed (m/s) by hour 
of the day over the southeastern portion of Tehachapi Pass (i.e. approximately the area of the 
forecast metric box) for the warm season. The average wind speed graph suggests that there may 
be a diurnal cycle in the pattern and amplitude of the forecast sensitivity. If the diurnal cycle is 
significant, then it may be valuable to analyze the forecast sensitivity by time of day. These 
results could then be used to develop a sensor deployment strategy that weights more heavily the 
sensitivity patterns at times of day most critical for a specific forecast application. 

The diurnal variability of the forecast sensitivity was investigated by computing the average 
sensitivity of the 3-hour forecast of 80-m wind speed to 80-m wind speed over a sub-domain area 
surrounding the metric box for each day in the analysis period. The geographical region enclosed 
by sub-domain area is depicted in Figure 6. The size of the sub-domain was selected to represent 
approximately the area in which propagating features could influence the Tehachapi target region 
within a 3-hour period given a typical propagation speed for low-level atmospheric features. 

The standard deviation of the sub-domain average sensitivity (SAS) was calculated for each day 
to provide an index of the amount of variability in sensitivity experienced on each day of the 
analysis period. The average daily standard deviation of the SAS was 0.15 m/s or 13.9% of the 
average SAS for the analysis period. However, the standard deviation exhibited considerable 
day-to-day variability ranging from a high of about 0.27 m/s on 25 July to a low of 0.02 m/s on 
16 August (Figure 7).  

The average diurnal pattern of the 3-hr forecast SAS to the 80-m wind speed is shown in Figure 
8. The results indicate that the sensitivity was highest during the morning hours (0800-1100 
PDT) after sunrise when the flow through the pass is weak and shallow. The lowest SAS was 
during the late afternoon and early evening (1700-2000 PDT) when the flow through the pass is 
deepest and strongest.  
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Figure 5. Average warm-season wind speed by hour of the day for a set of anemometers 
on the southeastern side of Tehachapi Pass, which is roughly coincident with the forecast 
metric box.  

 

 
Figure 6. A map depicting the sub-domain (large white box) used to compute an area-
average sensitivity for a region surrounding the Tehachapi Pass forecast target area.  
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Figure 7. Standard deviation of the sub-domain average sensitivity for each day in the 
analysis. The area of the sub-domain is shown in Figure 6. 

 

 
 

Figure 8. Sub-domain average sensitivity of a 3-hr forecast of the 80-m wind speed in the 
Tehachapi Pass metric box to the normalized initial condition variable of 80-m wind 
speed.  
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3.3 Day to Day Variability 
The sensitivity of forecasts also varies considerably from day to day. Periods of high sensitivity 
are generally characterized by larger forecast errors since the forecast metric is more sensitive to 
variations in the prior state of the atmosphere (i.e. the initial conditions). The day-to-day 
variability was analyzed by using the SAS values computed over the sub-domain shown in 
Figure 6.  

A daily average SAS value for a 3-hour forecast was computed for each day in the analysis 
period for three different initial condition variables: (1) 80-m wind speed, (2) northwest 
component of the wind at 1.5-km above mean sea level (AMSL), and (3) the 25-m to 1-km 
temperature difference (Figure 9). There is a strong tendency for days with high or low 
sensitivity to one of these variables to also be days of the correspondingly high or low sensitivity 
to the other variables. These results demonstrate that the day-to-day variability of sensitivity to 
each of these variables is highly correlated and the forecasts on some days are more sensitive 
than on other days.  

For example, the highest daily average SAS for all three IC variables occurred on 13 July while 
the SAS values for 16 August are among the lowest for all three IC variables. The spatial 
patterns of the sensitivity for 0600 UTC on 13 July (highest average sensitivity) and 16 August 
(lowest average sensitivity) are shown in Figures 10 and 11, respectively. These plots indicate 
that the sensitivity to the 80-m wind speed three hours earlier was high over a large area on 16 
July while it was generally near zero on 16 August except for some isolated points.  

 

Figure 9. Average daily sensitivity of a 3-hr forecast of the average 80-m wind speed in 
the Tehachapi Pass forecast metric box for each day in the analysis period to three 
different IC variables over the sub-domain depicted in Figure 6. 
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Figure 10. Sensitivity of a 3-hour forecast of the average 80-m wind speed in the white 
box at 0600 UTC 13 July 2008 (2300 PDT 12 July) to the 80-m wind speed at all points 
in the simulation domain  

 

 
Figure 11. Sensitivity of a 3-hour forecast of the average 80-m wind speed in the white 
box at 0600 UTC 16 August 2008 (2300 PDT 15 August) to the 80-m wind speed at all 
points in the simulation domain  
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3.4 Climatology 
The data presented in the previous section indicate that there is often a considerable amount of 
variability in the sensitivity patterns within a day and from day to day. In order to make 
inferences about the best measurement locations and variables to improve forecast performance 
over a time period composed of a wide variety of cases, it is necessary to construct some type of 
statistical composite of the sensitivity values over a representative sample of cases. The simplest 
composite is an average although that statistic may not be the most meaningful or useful 
parameter for every application. The average can be constructed for all dates and times in the 
analysis period to obtain information about which areas have the highest average sensitivity over 
all cases. The average can also be constructed by time of day to obtain a representation of any 
diurnal cycles in the sensitivity patterns. 

In addition, the average could be computed for specific subsets of the analysis period – such as 
those which experience large changes (ramps) in wind power production or time periods during 
which a particular wind or weather regime was present (such as northwest or southeast flow). 
This approach would yield information about the locations and variables that have the most 
sensitivity for those types of events. The regime-based approach may be particularly valuable if 
the objective is to create a network of measurements, which address a range of weather regimes 
and not just the most common regime. Event-based analysis may not have as much value for the 
reduction of the forecast error over a large sample of cases but it may be more valuable for 
reducing the error in certain critical situations associated with particular weather regimes. 

Another composite statistic that can be employed is the frequency of statistically significant non-
zero sensitivity. In this approach, the statistical significance of the sensitivity being non-zero at a 
specified confidence level is determined for each forecast interval at each grid point. The 
frequency of non-zero sensitivity can then be compiled for each point and used to create a map 
of the frequencies. Points with high values indicate locations to where the forecast is frequently 
sensitive. However, it does not provide information about which points typically have high 
sensitivity. This issue can be addressed by altering the frequency of statistically significant 
sensitivity calculation to employ a sensitivity magnitude threshold greater than zero. This 
approach could provide information about which points have a high frequency of relatively high 
sensitivity. 

The analysis performed in this project considered both the average sensitivity as well as the 
frequency of statistically significant non-zero sensitivity at the 95% confidence level for the 
entire analysis period and also for a subset of cases when observed ramps were identified. The 
climatology for the entire period is presented in Section 3.4.1 and the climatology for the ramp 
event subsample is summarized in Section 3.4.2. 

3.4.1 All Cases 
The average sensitivities over all time periods in the 45-day analysis period for four selected IC 
variables are shown in Figures 12 through 15.  These four IC variables produced the largest 
normalized sensitivity values and had the most coherent spatial patterns of the 10 IC variables 
that were considered in this study. Figure 12 illustrates the average 3-hour forecast sensitivity of 
the 80-m wind speed in the target region (white box) to 80-m wind speeds three hours earlier. 
This map indicates that there are areas of high average sensitivity to the north and northwest of 
Tehachapi Pass. The average sensitivity over much of the domain is near zero indicating that 80-
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m wind speed measurements in most locations would have little value for 3-hour forecasts of 80-
m wind speed in the target region. 

Previous analyses (Lin and Jao 1995; Watson et al 2009) of flow through Tehachapi Pass 
indicate that it is sensitive to the hydrostatic stability of the air entering the Pass and of the air 
layer above the Pass. This result provides motivation to examine the forecast sensitivity to the 
low-level atmospheric stability. The temperature difference between 25 m and 1 km above 
ground level was used as a metric of the low-level atmospheric stability. The patterns indicate 
that there is a well-defined region of high positive average sensitivity to this IC state variable in 
an area to the northwest of Tehachapi Pass (Figure 13). An increase in the 25-m to 1-km 
temperature difference in this area is associated with an increase in the 80-m wind speed in the 
target region three hours later. An increase in this temperature difference indicates that the air in 
the lowest kilometer of the atmosphere has become less stable. However, there is also a small 
area of negative sensitivity (dark blue) to the north-northeast of the target area. The negative 
values indicate an inverse sensitivity, which means that a decrease in the 25-m to 1-km 
temperature difference in this area is associated with an increase in the 80-km wind speed in the 
target area three hours later. 

It is interesting to note that the area of positive sensitivity is in a region where the surface 
elevation is well below the elevation of Tehachapi Pass whereas the area of negative sensitivity 
is in a region where the terrain elevation is similar or higher than the elevation of the Pass. 
Higher wind speeds in the metric area are favored when the layer below Pass level over the 
Central Valley is more unstable and the upper layer over the Pass is more stable. This result is 
very consistent with the physics of the dominant mode of warm season flow through the Pass. 

Figures 14 and 15 depict the average 45-day sensitivity of a 3-hour 80-m wind speed forecast to 
winds at two higher levels in the atmosphere: 1.5 km (~ the 850 hPa pressure level) and 3 km (~ 
the 700 hPa pressure level) AMSL. In both cases, the actual IC variable under consideration was 
the northwest-southeast component of the flow at the specified level and not the total wind 
speed. This parameter was selected because previous studies of the flow through the Pass have 
indicated that the flow in the Pass is more sensitive to strength of the Pass-parallel component of 
the upper level wind speed than to the actual wind speed. 

The sensitivity to the Pass-parallel component of the 1.5-km wind is shown in Figure 14. In 
general, the sensitivity pattern is much smoother than it is for the 80-m wind speed or the vertical 
temperature difference IC variables. This result is most likely due to complexity of the earth’s 
surface (terrain, roughness etc.) and the diurnal cycle of the winds at this level. The highest 
sensitivity values are concentrated in an area just to the northwest of the Pass. The typical flow in 
the warm season at this level is from the northwest so stronger upstream Pass-parallel flow 
generally leads to higher 80-m wind speeds in the Pass three hours later. 

The sensitivity pattern to the Pass-parallel component of the 3-km wind is much more diffuse 
than the 1.5-km pattern. The maximum sensitivity values are positive which indicates that a 
stronger Pass-parallel component even at the 3-km level is associated with a stronger 80-m wind 
speed. However, the maximum sensitivity is in a broad area to the south and southeast of the 
Pass.  
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Figure 12. Average sensitivity of 80-m wind speed (m/s) within the white target box to 
80-m wind speed (m/s) throughout the entire grid domain for a 3-hour forecast for all 
time periods in the 45-day analysis period.  

 

 
 

Figure 13. Average sensitivity of 80-m wind speed (m/s) within the white target box to 
25-m to 1-km AGL temperature difference throughout the entire grid domain for a 3-hour 
ahead forecast for all time periods in the 45-day analysis period. 
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Figure 14. Average sensitivity of 80-m wind speed (m/s) within the white target box to 
the 1.5-km AMSL wind speed (m/s) throughout the entire grid domain for a 3-hour 
forecast for all time periods in the 45-day analysis sample. 

 
Figure 15. Average sensitivity of 80-m wind speed (m/s) within the white target box to 
the northwest component of the 3-km AMSL wind speed (m/s) throughout the entire grid 
domain for a 3-hour forecast for all time periods in the 45-day analysis sample. 
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As noted earlier, an alternative summary statistic is the frequency with which an IC variable 
exhibits statistically significant non-zero sensitivity at the 95% confidence level. If this criterion 
is satisfied for a specific grid point and time, it indicates only a 5% probability that the sensitivity 
was produced by random data variations drawn from a sample in which the actual sensitivity was 
zero. Thus it is very unlikely that the actual sensitivity is zero at that point and time. However, 
this statistic does not provide information about the magnitude of the sensitivity.  

For the Tehachapi Pass experiment, the statistically significant non-zero sensitivity at the 95% 
confidence level was computed for each forecast interval in the 45-day analysis sample. Then the 
fraction of the 45-day sample having non-zero sensitivity was calculated for each of the IC 
variables under consideration 

Figure 16 illustrates the frequency of statistically significant non-zero sensitivity to the 80-m 
wind for a 3-hour forecast of the average 80-m wind speed in the metric area (white box). The 
frequency is over 80% for the points within the metric box itself and the area of greater than 80% 
frequency extends along the axis of the mountain ranges on both sides of Tehachapi Pass. The 
highest frequency of around 90% is in the immediate vicinity of the metric box itself. The fact 
that the area in the vicinity of the metric box has a high frequency of statistically sensitive non-
zero sensitivity but only a modest average sensitivity (Figure 12) suggests that the 80-m winds in 
metric box have a very persistent small sensitivity to the local values three hour earlier. 

This result is consistent with the fact that the recent history of the winds in the vicinity of the 
wind generation facility typically has some predictive value but that the forecast value of these 
data sets is quite modest. The off-site locations to the north-northwest of the metric box have a 
much higher average sensitivity (Figure 12) and the frequency of statistically significant non-
zero sensitivity is also near 70%. The combination of high average sensitivity and high 
frequency of non-zero sensitivity make these among the best locations for additional 
measurements to improve the forecasts for a typical day in Tehachapi Pass. 

There is a high frequency area of non-zero sensitivity over the Pacific Ocean to the west of the 
Santa Barbara but the average sensitivity in this region is quite low. There are two similar areas 
over the Mojave Desert to the southeast of the metric box. The one furthest to the southeast 
coincides with an area of low average sensitivity. The one closer to the metric box has a fairly 
high average sensitivity but lower than regions to the north and north-northwest (Figure 12). 

The frequency of statistically significant non-zero sensitivity of the 3-hour ahead 80-m wind 
speed forecast to the 25-m to 1-km temperature difference is depicted in Figure 17. Over the 
entire domain, the frequency of non-zero sensitivity to the low-level temperature difference is 
much lower than the frequency of non-zero sensitivity to the 80-m wind speed. However, the 
frequency is fairly high in the vicinity of the metric box and also along the northwest slopes of 
the Southern Sierra Nevada Mountains to the north-northwest of the metric box. This region also 
showed a large magnitude of negative sensitivity (Figure 13) and is therefore a valuable location 
to measure the vertical profile of temperature in the lowest kilometer of the atmosphere. 

There is also a frequency maximum in the extreme southern portion of the Central Valley to the 
west of the metric box. The value in this area is only slightly over 50% but it is also 
characterized by a maximum in the magnitude of positive average sensitivity values. As a result, 
there may also be considerable value in measuring the vertical profile of the temperature in this 
region. While there are also other areas of high frequency located at greater distances from the 
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metric box, many are not physically linked to the flow through the Pass on the 3-hour time scale 
and are merely correlated with the high frequency locations near the metric box, 

 

Figure 16. Frequency (fraction of time periods) of statistically significant non-zero 
sensitivity at the 95% confidence level of the average 80-m wind speed in the forecast 
metric area (white box) to 80-m wind speed 3 hour earlier for the 45-day sample. 

 
Figure 17. Frequency (fraction of time periods) of statistically significant non-zero 
sensitivity at the 95% confidence level of the average 80-m wind speed in the forecast 
metric area (white box) to 25-m to 1-km AGL temperature difference 3 hour earlier for 
the 45-day sample. 
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3.4.2 Large Wind Ramp Subsample 
As noted earlier the impact of wind forecast errors on operations is not the same for all 
situations. Forecast errors during periods of large changes in wind speed and the associated wind 
power production (known as wind ramps) have a greater impact on grid operations than 
prediction errors during other time periods. In addition, the forecast errors tend to be larger in 
these situations since there is typically more uncertainty in the atmospheric flow patterns during 
periods of large change. This situation provides motivation to compile summary statistics of the 
forecast sensitivity for a subsample consisting of only the large ramp time periods.  

The large ramp periods were defined through the use of wind power production values estimated 
from 5-minute wind speed data from several meteorological towers in the Tehachapi Pass area. 
One or two consecutive missing values in the 5-minute wind speed data series were filled in 
through linear interpolation. Longer periods of missing data were not filled in and omitted from 
the analysis. Wind speed was converted to power production as a percent of capacity using a 
power curve from a typical wind farm composed of 1.5-MW turbines resulting in values of 0% 
below 3.5 m/s. Power production increased from 0% at 3.5 m/s to 100% at 13.5 m/s and 
remained at 100% of capacity until 20 m/s then decreased linearly to zero at 24 m/s. Power 
production was computed separately from the wind speed data at each meteorological tower. The 
individual power production values were then combined into a single aggregate number by 
assuming that each tower represented an equal amount of the regional capacity. Since only a few 
meteorological towers were used, missing data from any single tower resulted in a missing data 
flag being assigned to the aggregate power for that interval. 

Ramp events were diagnosed on two time scales of 60 and 180 minutes. Sixty-minute ramps 
were located by finding the maximum change in power production over a time scale of 20 to 60 
minutes that began at each 15-minute period in the data sample. The largest positive and negative 
changes were recorded as the 60-minute upward and downward ramp rates for that period. The 
180-minute ramps rates were computed in the same way, but used power changes over a 65- to 
180-minute period. If the start and end time for ramps from adjacent or nearby 15-minute periods 
overlapped to any degree, the smaller amplitude ramp was eliminated. 

Next, a ramp event was defined for each 60- or 180-minute ramp rate. An event was defined as 
the entire contiguous period for which the 5-minute ramp rate exceeded 10% of the maximum 5-
minute ramp rate in the period. Once again, any overlapping ramps of the same sign were 
compared and the smaller one was eliminated from the sample. 

Finally, ramps of each sign (up and down) and duration range (60 or 180 minutes) were 
examined separately to create a list of 29 large ramps. The observed wind speed and calculated 
power time series for each ramp were examined starting with the largest amplitude ramp. Any 
ramp that was a result of a brief (approximately 15-30 minutes) or shorter spike in the wind 
speed or seemed to be the result of erroneous interpolation of brief data gaps was not included in 
the list. Ramps that appeared to be the result of a coherent and persistent change in the power 
were included. This process continued until there were 7 to 8 ramps of each type (i.e. up, down, 
60-minute, 180-minute) in the list. The resulting list of 29 ramp events is presented in Table 1. 
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Table 1. List of large ramp events used to define the ramp subsample for the sensitivity analysis. 
 

Start Time 
(YYYY MMDD HHmm) 

(UTC) 

Amplitude 
(% Capacity)

Maximum 5-
minute ramp rate 

(% Capacity) 

Duration 
(minutes) 

Upward Ramps 
2008 0712 2320 79.5 0.225 140 
2008 0809 1820 79.3 0.183 165 
2008 0709 2045 78.5 0.392 170 
2008 0715 2005 77.6 0.216 150 
2008 0815 0020 77.6 0.233 180 
2008 0726 0050 76.2 0.152 165 
2008 0723 2155 72.1 0.308 180 
2008 0726 2015 69.6 0.129 175 
2008 0716 1925 69.5 0.135 140 
2008 0708 2220 56.3 0.173 50 
2008 0714 1940 54.4 0.293 60 
2008 0712 0255 51.2 0.148 60 
2008 0821 2305 48.0 0.269 55 
2008 0822 2330 43.5 0.170 60 
2008 0718 2055 43.2 0.121 60 

Downward Ramps 
2008 0803 1445 -83.8 -26.2 150 
2008 0713 0140 -79.4 -31.2 150 
2008 0817 1030 -74.2 -15.2 180 
2008 0728 1620 -67.8 -17.6 180 
2008 0723 1335 -66.5 -52.3 175 
2008 0820 1535 -64.7 -20.4 180 
2008 0727 1235 -63.4 -33.5 140 
2008 0822 1325 -63.1 -15.1 190 
2008 0809 0110 -63.0 -15.2 145 
2008 0820 0040 -53.1 -25.2 60 
2008 0815 0445 -49.5 -40.2 60 
2008 0811 1215 -49.4 -11.3 60 
2008 0815 1525 -44.3 -8.6 60 
2008 0714 0320 -40.9 -10.2 65 

 
The average sensitivity of a 3-hour forecast of 80-m wind speed to each of the ten IC variables 
considered in this investigation was computed over the 3-hour forecast intervals that bracketed 
the start times of the large ramp events. Therefore, the forecast metric time was either during or 
after the event while the initial condition time was prior to the start of the event. A depiction of 
the geographical patterns for three most sensitive IC variables is presented in Figures 18 through 
20.  

The average sensitivity to the 80-m wind speed three hours earlier is shown in Figure 18 and is 
analogous to the average sensitivity over all time periods in the 45-day sample (Figure 12). It can 
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be seen that the average sensitivity to 80-m wind speed for the ramp event subsample is quite 
similar to the average sensitivity for all time periods in the 45-day analysis period. The area of 
highest sensitivity stretches northward from Tehachapi Pass on the northwest side of the 
Southern Sierra Nevada Mountains.  

The average sensitivity of 3-hour ahead forecasts of the 80-m wind speed to the 25-m to 1-km 
temperature difference for the ramp event cases is shown in Figure 19. This map is analogous to 
the average sensitivity for the entire 45-day sample shown in Figure 13. The ramp event cases 
are characterized by a sharper gradient between the negative sensitivity areas over the mountains 
to the north of Tehachapi Pass and the positive sensitivity area in the Central Valley to the 
northwest of the Pass. A stronger gradient is found because the positive sensitivity area in the 
Central Valley covers a broader area and has a larger magnitude. 

The average sensitivity to the northwest component of the 1.5-km wind speed for the ramp event 
time periods is shown in Figure 20. The corresponding depiction for the full 45-day sample is 
presented in Figure 14. This comparison indicates that the magnitude of the maximum average 
sensitivity for the ramp event cases is similar to the magnitude of the maximum for the full 45-
day sample but the area of high sensitivity is much larger for the ramp event cases. For the ramp 
event time periods, the area of high sensitivity extends northward well into the Central Valley.  

Several factors should be considered when analyzing the sensitivity composites for the ramp 
event cases. First, the selection of cases was based upon observed ramp events inferred from 
actual anemometer data from the southern portion of Tehachapi Pass. However, it is not certain 
that all or even some members of the simulation ensemble had equivalent ramp events during the 
same time windows. It is certainly possible (even likely) that the errors in the timing of the 
events in all or some of the ensemble members were large enough to move the event outside the 
forecast window (i.e. outside the 3-hour window between the IC variable time and the forecast) 
used to analyze the sensitivity for each case. 

In other cases, it is possible that the simulation ensemble (or a large fraction of it) completely 
missed the event. In either case, the sensitivity computed for that event may not be representative 
of the time period associated with a ramp event. It would be necessary to diagnose the ramp 
events contained in the time series of simulated data and compare the timing and amplitude with 
those for observed events. This analysis was beyond the scope of the current effort but would 
reveal how well the simulated data for these time periods represented ramp events.  

The second factor that should be considered is that the ramp event sample consisted of both 
upward and downward ramps as well as 60-minute and 180-minute events In fact, the numbers 
of each type of event (up or down, short or long) included in the sample were approximately 
equal and therefore not dominated by any one type. However, it is likely that the flow patterns 
associated with each of these types of ramp events have different characteristics. Therefore, it is 
a reasonable expectation that the sensitivity pattern for each type of event may have significant 
characteristics that are different from the other types of events. The fact that all four types of 
events were included in the sample in approximately equal numbers suggests that unique 
sensitivity characteristics were likely lost in the averaging process. 

 



 21

 
Figure 18. Average sensitivity values of 80-m wind speed (m/s) within the white target 
box to the 80-m wind speed throughout the entire grid domain for a 3-hour look-ahead 
period for the ramp event time periods listed in Table 1.  

 
Figure 19. Average sensitivity values of 80-m wind speed (m/s) within the white target 
box to the 25-m to 1-km temperature difference throughout the entire grid domain for a 
3-hour look-ahead period for the ramp event time periods listed in Table 1. 
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Figure 20. Average sensitivity values of 80-m wind speed (m/s) within the white target 
box to the northwest (~ Pass-parallel) component of the 1.5-km wind speed throughout 
the entire grid domain for a 3-hour look-ahead period for the ramp event time periods 
listed in Table 1. 
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3.5 Strategy for Determining an Optimal Set of Variables and Locations 
The forecast sensitivity dataset can be used to select a combination of locations and variables 
that will provide the most improvement for the prediction of the forecast metric over the desired 
look-ahead period. The simplest and most obvious way to do that is to select the location of the 
maximum average sensitivity for each IC variable considered. However, the direct use of these 
points would likely not yield an optimal solution because the IC variables, in general, have a 
significant degree of correlation. Therefore, even though a number of variables may exhibit a 
high degree of sensitivity, much of the “predictive” information in each variable is highly 
correlated with the information in other variables. Therefore, many of the highly sensitive 
variables/locations essentially provide redundant information about the variability of the forecast 
metric for a given look-ahead period.  

In order to address this issue, a procedure, termed Multiple Observation Optimization Algorithm 
(MOOA), was formulated to determine the relative predictive value of different combinations of 
variables/locations. In this procedure, a small set of variables/locations are selected by a separate 
algorithm and then multiple linear regression is performed on all combinations of 
variables/locations within that set. The variables are normalized prior to the regression. The 
normalization permits the regression coefficients to be used as an indicator of the relative 
importance of each variable when used in a combination. The R2 values of each multiple 
regression can also be used as an indicator of which combinations and individual 
variables/locations have the most value for a given forecast look-ahead period.  

This approach was applied to the forecast sensitivity data generated for Tehachapi Pass. Separate 
calculations were performed for the full 45-day sample and the ramp-event subsample. In this 
application, the initial selection criterion was the location of the maximum 45-day average 
sensitivity for each of the three variables under consideration: (1) 80-m wind speed, (2) the 1.5-
km AMSL northwest wind component and (3) the 25-m to 1-km temperature difference (i.e. 
lapse rate). In general, the locations of maximum average sensitivity are quite similar for the full 
sample and the subsample (Figure 21). They are generally in the complex terrain to the north of 
the Tehachapi Pass metric box. The locations for the two wind variables are to the west of the 
location for the boundary layer lapse rate variable. The 3-km wind speed variable was not 
considered in this analysis because its normalized sensitivity was much lower than that of the 
other three variables and consequently it did not increase the R2 nearly as much as the other three 
variables. 

Once this set of variables/locations was selected, multiple linear regression was performed on all 
combinations of variables/locations separately for the full sample and the ramp event subsample. 
The R2 values for the resulting regression equations are listed in Table 2. Among the single 
variable regressions, the 80-m wind speed had the highest R2 value, indicating that this is the best 
single variable/location to measure. However, the R2 values for the other two single variable 
regressions were only modestly lower, which suggests that they might add additional predictive 
value. Indeed, all of the two-variable regressions had a substantially higher R2 value than the best 
single variable regression. The combination of 80-m wind speed and the 25-m to 1-km 
temperature difference produced the highest two-variable R2 value for both the full 45-day 
sample and the ramp event subsample. This result indicates that among the variables/locations 
considered, these would be the best choice to measure. The combination of upstream 80-m wind 
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speed and the lapse rate in the layer above the Pass is physically quite reasonable since flow 
through the Pass is strongly modulated by the speed of the wind entering the Pass and the 
stability of the air above the Pass. 

The results from the three-variable regression indicate that the additional value in measuring the 
1.5-km northwest wind component is much more modest than adding the second variable. For 
the full sample, the average R2 value increased by 0.041 over the best two-variable regression. 
and 0.038 for the ramp event subsample suggesting that the third variable does provide some 
additional useful information.  

The results in Table 2 only represent the average R2 for all the time periods in the respective 
sample. However, the R2 values actually vary substantially among the time periods in the sample 
from a high of about 0.62 to a low of slightly under 0.15 (Figure 22). A similar degree of 
variability was found in the full 45-day sample. Thus, it is evident that the forecast metric is 
substantially more sensitive to this combination of variables/locations for some time periods then 
it is for other time periods. 

In addition to the variability in the three-variable R2 within the ramp-event sample, there was 
also a considerable variability in the relative contributions of each variable/location (Figure 23). 
As noted earlier, the variables have been normalized so the magnitude of the coefficients is a 
direct indication of the relative influence of each variable on the overall relationship. None of the 
individual variables consistently dominate the relationship. The 80-m wind speed variable is 
dominant for some time periods (e.g. 23 July 2100 UTC) but the lapse rate and 1.5-km wind 
variables have a dominant influence at other times (e.g. 15 August 0600 UTC). In some cases, all 
three variables have nearly equal influence (e.g. 9 August 0300 UTC) 

  
Figure 21. Locations of the points of maximum average 45-day sensitivity for a 3-hour 
forecast of the average 80-m wind speed over an area on the southeastern side of 
Tehachapi Pass (white box) for three initial condition variables: (1) 80-m wind speed, (2) 
northwest component of the 1.5-km AGL wind speed and (3) the 25-m to 1-km 
temperature difference. The color shading depicts the elevation (m) of the model terrain 
above sea level.  
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Table 2. Average R2 value for 1, 2 and 3 variable sensitivity regression for a 3-hour forecast of 
the 80-m wind speed in the forecast metric target area in the southeastern portion of Tehachapi 
Pass (white box in Figure 20) for all time periods and only the ramp periods. 
 

IC Variables All Periods Ramp Periods 
One Variable 

(1) 80-m wind speed 0.287 0.249 
(2) 1.5-km AMSL northwest wind component 0.216 0.212 
(3) 25-m – 1-km temperature difference 0.219 0.203 

Two Variables 
(1) and (2) 0.357 0.324 
(1) and (3) 0.371 0.358 
(2) and (3) 0.325 0.325 

Three Variables 
(1), (2) and (3) 0.412 0.396 

 
 

 
Figure 22. R2 value for a multiple regression of three normalized IC variables from their 
respective points of maximum average 45-day sensitivity (locations depicted in Figure 
20) for a 3-hour forecast of the average 80-m wind speed in the Tehachapi Pass metric 
box for each of 29 ramp events.  
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Figure 23. Absolute value of the regression coefficient for combinations of three 
normalized IC variables from their respective points of maximum average 45-day 
sensitivity (locations depicted in Figure 20) for a 3-hour forecast of the 80-m wind speed 
in the Tehachapi Pass metric box for each of 29 ramp events.  

 
The multiple variable/location analysis suggests that it is necessary to utilize all three of the 
identified variables/locations in order to achieve consistent value for the ramp event cases. 
However, there is likely more information to be extracted from the sensitivity dataset given that 
several factors were not considered in this preliminary analysis.  

First, the analysis did not account for the fact that the there may be other locations (with less than 
the maximum sensitivity) of the same variable that have more value in a combination than the 
location of maximum sensitivity of an additional (i.e. different) variable. For example, a second 
80-m measurement may increase the R2 of a multi-variable regression more than the stability 
parameter measured at the point of maximum sensitivity. Therefore, it would be useful to include 
multiple points from each variable in the final analysis rather than just the point of maximum 
sensitivity.  

A second factor is the issue of whether the point of maximum average sensitivity is the best 
initial location to select for a particular variable. It is clear from an examination of the sensitivity 
fields for individual time periods that the location of maximum sensitivity varies substantially 
among the time periods in the analysis sample. Thus for some cases, the point of maximum 
average sensitivity is actually a low sensitivity point. The root question is how to best combine 
information from the sensitivity fields for the individual time periods into an aggregated field 
that provides the best guidance on which point to select. For example, instead of using the 
average sensitivity, the frequency of significant sensitivity for a particular confidence level could 
be employed as the basis for the selection of a candidate observation point for a particular 
variable. This method would select a point having the most frequent occurrence of non-zero 
sensitivity but would not necessarily be the point frequently close to the highest sensitivity value. 
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There are many other summary statistics that could be used as the basis for selecting the 
observation point and these can be explored in extensions of the current effort.  

A third issue is the set of ten variables considered in the current analysis. These particular ones 
were selected based on experience with the physics of the Tehachapi Pass wind patterns and 
variables that have the potential to be measured at high temporal frequency and modest cost with 
current technology. It is certainly possible that the forecast metric could have a higher sensitivity 
to other basic or derived variables not considered here as part of the single or multivariate 
analysis. 

A final issue is the representativeness of the period used for the ESA as the wind regimes in 
Tehachapi Pass are quite different in the summer versus the winter. From a wind energy 
perspective, the warm season is much more important since a disproportionate fraction of the 
power generation occurs during the warm season and the demand for power in California is 
much greater during that time of year. As a result, management of the electric grid is more 
sensitive to short-term wind energy forecasts in the warm season. A related issue is that the 
frequency of weather regimes (e.g. easterly versus westerly flow) in any season varies from year 
to year and thus it would be useful to expand the warm season sample by including cases from 
other years. 

It is also important to note that the forecast sensitivity fields and the observation deployment 
strategies derived from them were not validated in this study. These issues could be addressed by 
observation denial experiments using data gathered at the targeted locations or observing system 
simulation (OSSEs) experiments (e.g. Kalnay et al. 1985; Arnold and Dey 1986). Such 
validation is essential before using the ESA approach as a routine tool for the formulation of 
senor network deployment strategies intended to improve the very short-term forecasting of wind 
power production. 



 28

4 Summary 
A recently formulated approach called Ensemble Sensitivity Analysis (ESA), which is designed 
to analyze the sensitivity of forecasts to changes in the prior values of atmospheric state 
variables, was applied to short-range forecasts of the 80-m wind speed in the Tehachapi Pass of 
California. The method is based on the statistical analysis of data from a relatively large 
ensemble of NWP model simulations for an analysis period that is representative of the weather 
regimes in the area of interest. The members of the ensemble differ from each other due the 
introduction of perturbations in the initial and boundary conditions of the numerical atmospheric 
simulations. The introduction of the perturbations permits an analysis of the sensitivity of a 
forecast for a selected metric and look-ahead period to prior values of atmospheric state variables 
for individual dates and times. One or more types of composites (e.g. averages) of the forecast 
sensitivity parameters for individual dates and times can then be generated to provide 
information about the climatological sensitivity patterns. These composite patterns can, in turn, 
be used as guidance on where to deploy meteorological sensors to achieve the greatest impact on 
forecast performance for the desired variable and look-ahead period. This method has previously 
been applied to large-scale weather prediction but not to short-term wind forecasting.  

The ESA approach was applied to Tehachapi Pass through the use of the WRF 2.2 atmospheric 
model and DART data assimilation software. This software system was used to execute an 
ensemble of 48 members over a period that extended from 1200 UTC 7 July to 1200 UTC 24 
August 2008. The first day and a half was considered to be a spin-up period for the ensemble and 
was excluded from the forecast sensitivity calculations. Output was saved every hour and the 
forecast sensitivity for 1- to 6-hour look-ahead periods was computed from the hourly output 
data. Ten prior state variables were considered in the analysis. The forecast sensitivity was 
computed for all time periods in the sample as well as a ramp event subsample. The ramp-event 
subsample consisted of 29 time periods in which large changes (up or down) in wind power 
production occurred in a 3-hour or shorter period.  

The forecast sensitivity patterns derived from the dataset were characterized by well-defined, 
localized patterns of high sensitivity for a number of prior state variables. The patterns were 
coherent and consistent with the existing knowledge of the basic physical processes that drive the 
wind patterns in the Tehachapi area. The most consistently sensitive variables for the Tehachapi 
Pass forecast target area were (1) the 80-m wind speed; (2) the 25-m to 1-km temperature 
difference and (3) the 1.5-km AMSL Pass-parallel (northwest) wind component. 

The ESA approach developed by previous investigators was designed to produce spatial fields of 
forecast sensitivity for a set of prior state variables selected by the user. However, no strategy for 
determining the optimal combination of multiple variable-location combinations had been 
developed in the studies published previously. Thus, in order to provide specific guidance for the 
design of a network of multiple sensors and locations, MOOA was developed to determine the 
optimal combination of measurement locations and variables from the multitude of correlated 
sensitivity patterns. 

The application of the MOOA to the forecast sensitivity data indicated that the 80-m wind speed 
at a location the north-northwest of Tehachapi Pass was the most sensitive variable and location 
out of those considered. The second most sensitive variable and location was the 25-m to 1-km 
temperature difference also at a location to the north-northwest of the Tehachapi Pass wind 
generation area. The results of the MOOA suggest that the optimal measurements for improving 



 29

the forecast of 80-m wind speed in Tehachapi Pass are 80-m wind speed, low-level temperature 
difference, and 1.5-km pass-parallel wind component at locations to the north-northwest of the 
Tehachapi Pass wind generation area.  

The results demonstrate that the ESA method can produce physically consistent forecast 
sensitivity results on mesoscale space and time scales and be used to provide specific and 
physically reasonable guidance for the design of sensor networks intended to improve the 
performance of forecasts for specific variables (forecast metrics) and locations (forecast target 
areas). However, forecast sensitivity fields and the observation deployment strategies derived 
from them were not validated in this study. These issues could be addressed by observation 
denial experiments using data gathered at the targeted locations or observing system simulation 
(OSSEs) experiments. 

There are number of possibilities to extend the pioneering work done in this study. As noted 
above, a validation of the sensitivity fields and selected targeted observation locations is needed 
to establish a higher level of confidence in this approach for the mesoscale observation targeting 
application.  

In addition, the analysis could be extended to other times of the year in Tehachapi pass or 
applied to other locations by using a 45-day sample in each season to approximate a climatology 
of sensitivity for the entire year and each of the four major seasons.  

The analysis could also be expanded to include other prior state variables in addition to the ten 
considered identified in this study. Finally the MOOA could be enhanced to consider multiple 
locations from each prior state variable instead of just the maximum sensitivity points considered 
here. 
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Appendix A, Specifications of the ESA Configuration 
 

Table A-1. Configuration of the WRF 2.2 model and grid used in this investigation 

Grid 

• Matrix Size (NX, NY, NZ): 200 X 200 X 38 

• Grid cell size: ~ 4 km 

Model Configuration 

• WRF single-moment (WSM) 3-class ice scheme 

• Long wave radiation scheme: Rapid radiative transfer model 

• Short wave radiation scheme: Dudhia scheme 

• Boundary layer scheme: YSU scheme 

• No convective Parameterization 

• 20-second time step 

• Runge-Kutta 3rd-order time integration 

• Horizontal Smagorinsky 1st-order closure  

• 6th-order numerical diffusion turned on 
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Table A-2. Configuration of the Data Assimilation Research Testbed (DART) module 

• Square root Ensemble Kalman Filter  

• Cycled every 6 hours 4 times a day with various observations 

• Ensemble size: 48 members 

• Perturbed initial conditions from National Weather Service (NWS) Rapid Update Cycle 
(RUC) for first cycle 

• Perturbed boundary conditions for each assimilation period, boundary conditions also 
from RUC 

• Deterministic inflation based on spatially-varying state space (i.e. covariance inflation)  

• Initial inflation standard deviation 0.6 

• Initial inflation 1.0 

Table A-3. Data Assimilated Every 6 Hours into the Ensemble of Simulations 

Assimilated observations Validation observations 
 'RADIOSONDE_TEMPERATURE',        
 'RADIOSONDE_U_WIND_COMPONENT', 
 'RADIOSONDE_V_WIND_COMPONENT', 
 'RADIOSONDE_SPECIFIC_HUMIDITY',    
 'ACARS_TEMPERATURE', 
 'ACARS_U_WIND_COMPONENT', 
 'ACARS_V_WIND_COMPONENT', 
 'ACARS_SPECIFIC_HUMIDITY', 
'MARINE_SFC_TEMPERATURE', 
'MARINE_SFC_SPECIFIC_HUMIDITY', 
 'RADIOSONDE_SURFACE_ALTIMETER', 
'MARINE_SFC_ALTIMETER', 
 'LAND_SFC_ALTIMETER', 
 

'METAR_TEMPERATURE_2_METER', 
 'METAR_U_10_METER_WIND', 
 'METAR_V_10_METER_WIND', 
'MARINE_SFC_U_WIND_COMPONENT',
'MARINE_SFC_V_WIND_COMPONENT',
 'LAND_SFC_U_WIND_COMPONENT', 
 'LAND_SFC_V_WIND_COMPONENT', 
 'DEW_POINT_2_METER',/ 
 'LAND_SFC_TEMPERATURE', 
 'LAND_SFC_SPECIFIC_HUMIDITY', 
 

Assimilated observations are used to correct the simulated state of the atmosphere at each data 
assimilation time. Validation observations are used to compute evaluation statistics (e.g. root 
mean square error) that provide a measure of how well the model state matches the observed 
state of the atmosphere at a specified time. 

 


